Modal Control of Vibration in Rotating Machines and Other Generally Damped Systems
نویسندگان
چکیده
Second order matrix equations arise in the description of real dynamical systems. Traditional modal control approaches utilise the eigenvectors of the undamped system to diagonalise the system matrices. A regrettable consequence of this approach is the discarding of residual off-diagonal terms in the modal damping matrix. This has particular importance for systems containing skew-symmetry in the damping matrix which is entirely discarded in the modal damping matrix. In this paper a method to utilise modal control using the decoupled second order matrix equations involving nonclassical damping is proposed. An example of modal control sucessfully applied to a rotating system is presented in which the system damping matrix contains skew-symmetric components.
منابع مشابه
Vibration Analysis of a Rotating Nanoplate Using Nonlocal Elasticity Theory
The nanostructures under rotation have high promising future to be used in nano-machines, nano-motors and nano-turbines. They are also one of the topics of interests and it is new in designing of rotating nano-systems. In this paper, the scale-dependent vibration analysis of a nanoplate with consideration of the axial force due to the rotation has been investigated. The governing equation and b...
متن کاملAn Engineering Interpretation of the Complex Eigensolution ofLinear Dynamic Systems
In traditional finite element based modal analysis of linear non-conservative structures, the modal shapes are determined solely based on stiffness and mass. Damping effects are included by implicitly assuming that the damping matrix can be diagonalized by the undamped modes. The approach gives real valued mode shapes and modal coordinates. While this framework is suitable for analysis of most ...
متن کاملCoupled Flap-Lag-Torsional Vibration Analysis of Pre-twisted Non-uniform Helicopter Blades
An approximate numerical mthod is presented for analysis and determination of modal characteristics in straight, pretwisted non-unifom helicopter blades. The analysis considers the coupled flapwise bending (out of plane), chordwise bending (in plane), and torsion vibration of both rotating and non-rotating blades. The proposed method is based on the integral expansion of Green functions (struct...
متن کاملFlow-Induced Instability Smart Control of Elastically Coupled Double-Nanotube-Systems
Flow induced vibration and smart control of elastically coupled double-nanotube-systems (CDNTSs) are investigated based on Eringen’s nonlocal elasticity theory and Euler-Bernoulli beam model. The CDNTS is considered to be composed of Carbon Nanotube (CNT) and Boron-Nitride Nanotube (BNNT) which are attached by Pasternak media. The BNNT is subjected to an applied voltage in the axial direction w...
متن کاملCoupled Flap-Lag-Torsional Vibration Analysis of Pre-twisted Non-uniform Helicopter Blades
An approximate numerical mthod is presented for analysis and determination of modal characteristics in straight, pretwisted non-unifom helicopter blades. The analysis considers the coupled flapwise bending (out of plane), chordwise bending (in plane), and torsion vibration of both rotating and non-rotating blades. The proposed method is based on the integral expansion of Green functions (struct...
متن کامل